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Short relatively deep tidal basins, which are connected to the open sea by a narrow
strait, may exhibit either an amplified (resonant), or damped (choked) response to
the tide at the entrance. Here particular attention is given to the lowest mode of
response, which is the Helmholtz or pumping mode, for which the sea level within
the basin executes a spatially uniform oscillation. When the basin’s sidewalls slope,
the restoring process of this oscillator is nonlinear. Possible consequences of this
nonlinearity are that the basin may exhibit either long-lasting high-waters and short,
peaked low-waters or long-term regular modulation of its tidal amplitude, or a chaotic
modulation of its tidal amplitude, or ‘bent resonance horns’, implying that resonant
and choked tidal responses may exist simultaneously for the same parameter regime.
Related field observations will be discussed.

1. Introduction
Tides have a strong impact on the coastal environment. Not only can tides affect

rivers over very long distances, like in the Amazon, where their influence is marked up
to 850 km from the mouth of the river (Defant 1961), but their effects become even
more dramatic in coastal embayments, where the tide can be significantly amplified,
up to a range of 17 m in the Bay of Fundy (Garrett 1972), due to the proximity of
one of its key frequencies to one of the eigen-frequencies of the bay.

Different geometric settings of coastal waters determine different kinds of responses,
which need their own description of the physics involved. In the first example above,
for instance, the tide, ‘propagating’ up-river, is of a diffusive nature, due to the
balance between pressure gradient and quadratic bottom friction which exists in the
(along-river) momentum equation (LeBlond 1978; Friedrichs & Madsen 1992). The
tidal influence thus gradually diminishes up-river. In contrast, in the second example,
inertial effects are relevant, and lead to resonant amplification of the tide. A finite-
amplitude response is in this case mainly due to radiative damping of the resonating
bay, a linear damping mechanism (Garrett 1975).

Relatively wide coastal embayments are, like organ pipes, mostly dominated by
quarter-wave resonances. In short deep basins, connected to the open sea by a narrow
strait, a still simpler kind of resonance may be produced by an oscillatory external tide:
the Helmholtz mode (Mei 1989). This mode can be best understood as a perturbation
of an enclosed basin. An enclosed basin has eigenmodes which are all characterized
by the fact that they necessarily conserve mass. Thus, there will always be a zero-
elevation line somewhere in the basin, which seperates regions with opposite phases
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(180◦ phase difference). These eigenmodes are therefore aptly referred to as sloshing
modes. The sole mode added to this system when the basin communicates with a
tidal sea through a narrow strait is the pumping or Helmholtz mode, characterized
by a periodic mass exchange through the narrows and associated spatially uniform
elevation change within the basin. This is generally also the most energetic mode of
such a basin (Carrier, Shaw & Miyata 1971). The Helmholtz mode has been employed
to explain tidal oscillations in, for instance, Lake Maracaibo (Redfield 1961; Molines,
Fornerino & LeProvost 1989), and even in a system as big as the Gulf of Mexico in
order to explain the relatively large amplitudes of its diurnal tides (Platzman 1972).
Incidentally, this mode need not necessarily be excited by an oscillatory external flow
as it may also be produced by a steady shear current at its entrance (Fabrikant 1995).

The linear Helmholtz oscillator is well-known in tidal analysis, albeit on a much
smaller scale and, actually, not as a resonator, but as a damper. It happens to describe
also the response of a ‘stilling well’, a device which measures tidal height in a cylinder
which is connected to the open sea by a submerged small tube, which is constructed
precisely to filter out high-frequency wind and capillary waves, see Shih & Baer (1991).
Thus, the linear response of an almost-enclosed basin to a tide in the connecting sea
can be two-fold. Either the tide is amplified, as when the basin is near resonance, or
it is suppressed – ‘choked’ (Stigebrandt 1980), far away from resonance. Clearly this
is not only determined by the near-resonance of the forcing frequency, but also by
the strength of the damping. Here damping is, apart from radiative losses alluded to
before, controlled by two processes in the strait. The first process is quadratic bottom
friction of the strong currents in the narrows – frictional loss in the basin being small
due to the relative weakness of the currents there (Mehta & Özsoy 1978; Zimmerman
1992). The second process is due to the asymmetry of the calm spread-out inflow and
the swift jet-like outflow (Stommel & Farmer 1953), which produces a difference in
dynamic pressure (Bernoulli head) between entrance and exit, reducing the total head
(pressure difference) driving the flow through the channel. Remarkably, these two pro-
cesses lead to the same nonlinear quadratic damping law, see Mehta & Özsoy (1978).

The frictional, Helmholtz or cavity resonator, derived in §2, is an attractive model
of tides in almost-enclosed basins because it captures much of the essential physics,
while retaining the simplicity of a lumped-parameter model (Elmore & Heald 1969).
One aspect notably absent in the usual application of this model, however, is a
proper description of the geometry of the basin. It is common that in these kinds of
models the basin is supposed to have vertical sidewalls (see §3). In reality sidewalls are
sloping, in particular for tidal basins possessing extensive tidal flats, like for instance
those of the Wadden Sea – a complex of tidal basins, separated by tidal flats and
watersheds, see figure 1. Although drying banks have routinely been incorporated in
numerical models (e.g. Flather & Heaps 1975; Speer & Aubrey 1985) their study,
from a fundamental point of view, has been relatively neglected. The effect of a
sloping sidewall on the period of a Helmholtz resonator has recently been addressed
by Green (1992), who formulated an unforced inviscid small-amplitude version of
the evolution equation to be discussed here. He showed that by including sloping
sidewalls the Helmholtz oscillator becomes nonlinear and by perturbation methods
found that the period of its free Helmholtz mode diminishes slightly with increasing
amplitude of the response. In §4 the finite-amplitude response of the free as well
as the forced and damped nonlinear Helmholtz oscillator will be addressed, both
analytically and numerically. The nonlinearity will be shown to lead to a distortion
of the tidal profile, to slow modulation of the tidal amplitude, possibly to chaotic
tides, and, for the most realistic situation which includes both forcing and damping,
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North Sea

Figure 1. Bathymetric chart of the Dutch part of Wadden Sea, with watersheds dashed. Isobaths
(thin solid lines) refer to mean sea level. Numbers refer to basins, the names and characteristic
dimensions of which are given in table 1.

to multiple equilibria. The latter indicates that a basin may exhibit, under certain
circumstances, both an amplified and a choked tidal regime, which may, in principle,
lead to a dramatic change in tidal range under a small variation of the environmental
parameters. In this section also the possible relevance of this model to tides in the
Wadden Sea will be discussed. In §5 the paper is summarized and some unresolved
aspects of the problem are discussed.

2. Tidal Helmholtz resonator
Consider a basin with top view as sketched in Figure 2, of maximum depth H and

horizontal area A∗, which depends on depth z∗/H , and which is connected to the sea
by a narrow strait of width B and depth H . The vertical coordinate z∗ is measured
from mean-water level upwards. Assume that the strait’s length L, as well as the

basin’s length scale A
1/2
0 , are much smaller than the tidal wavelength in the basin, λ,

so that the tidal wave traverses the basin ‘instantaneously’. Here A0 = A∗(0) is the
basin’s surface area at z∗ = 0 in the absence of an external tide. The tidal wavelength
λ = 2πc/σe is determined by the lunar semi-diurnal tidal frequency σe = 1.4× 10−4

rad s−1 and the long-wave speed c = (gH)1/2, in which g denotes the acceleration
due to gravity. Let the external (tidal) elevation at sea ζe(σet∗) be a given periodic
function of time t∗. Then, when the basin is relatively broad and thus velocities and
frictional effects small, the momentum equations within the basin reduce, to lowest
order, to a statement that horizontal pressure gradients (and thus also horizontal
gradients in the elevation field) vanish. The response within the basin will therefore
be dominated by the spatially uniform Helmholtz mode. The state of the tide within
the basin can then simply be described by a single time-dependent parameter, like the
surface elevation, ζi, or the volume. Here we will actually employ the excess volume
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Figure 2. Definition sketch of a tidal basin with connecting strait.

within the basin, V∗ ≡
∫ ζi

0
A∗(z∗/H)dz∗, which is the amount of fluid in excess of the

volume contained in the basin below mean sea level. The excess volume within the
basin changes due to the mass flux entering through the strait

dV∗
dt∗

= −u0(H + ζ0)B. (1)

Here u(x, t∗) is the depth-averaged flow (aligned in the along-strait x-direction) and
ζ∗(x, t∗) the surface elevation within the strait. Subscripts 0 refer to the values these
variables take at the entrance of the basin (x = 0). The flow through the strait,
neglecting Coriolis effects, is determined by the momentum equation

∂u

∂t∗
= − ∂

∂x
(gζ∗ + 1

2
u2)− k

H + ζ∗
|u|u, (2)

where k is a bed stress coefficient (k ≈ 0.0025). The dynamic pressure term (second
term on the right) may contain an additional multiplication factor, reflecting the
depth-dependence of the real flow, omitted here (Prandle 1991). Several simplifying
assumptions are made. The flow within the channel is assumed to be uniform in
the downstream (and cross-stream) direction u0 ≡ u(t∗), the change in the flow field,
in response to a dramatic change in width, at both ends taking place just outside
the strait. Similarly, the elevation is assumed to drop linearly over the length of the
channel. Consistency requires the surface elevation to be negligible when compared
to the mean channel depth, both in the expression for the mass flux on the right-hand
side of (1), and in the denominator on the right-hand side of (2). This is physically
equivalent to the assumption that the strait is approximated by a pipe and is simply
driven by the pressure difference g(ζe − ζi), where subscripts i, e refer to values of
the variables just in the interior (basin) and exterior (sea) respectively. Therefore,
integrating (2) along the length of the channel, L, from just inside the basin at x = 0−

(where ζ∗ = ζi) to just outside the channel at x = L+ (where ζ∗ = ζe), and neglecting
the above terms, leads to

L
du

dt∗
= g(ζi − ζe) + 1

2
(u2
i − u2

e)− L
k

H
|u|u, (3)
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while the change in excess volume is now simply given by

dV∗
dt∗

= −uHB. (4)

The difference in the jet-like outflow and the potential-flow-like inflow implies that
the dynamic pressure difference (the second term on the right of (3)) can be evaluated
as follows. Consider the ebb flow (u > 0). In this case the widespread inflow is less
than the channel flow (but still proportional to it): ui = (1− δ)u < u, where δ denotes
an empirical proportionality constant. However, the outflow, initially at least, retains
its width as a jet and therefore has approximately ue = u. Hence, for small values
of δ, 0 < δ � 1, the difference in dynamic pressure is −δu2. In the flood phase
(u < 0) ui = u, and ue = (1 − δ)u, so that this difference amounts to δu2. In general,
therefore, the dynamic pressure difference is −δ|u|u, and has a form analogous to the
bottom-friction term (last term of (3)), with which it is combined below.

Bottom friction and the pressure drop related to the asymmetry between in- and
outflow are not the only processes damping the Helmholtz oscillator. When the sea-
level oscillation within the basin is amplified with respect to its value at sea the basin
will lose some energy by radiating waves back into the sea. This leads to a number of
adjustments to the above expressions (Miles 1948; Garrett 1975). First, because part
of the water outside the strait now takes part in the oscillation, the effective length
of the channel L increases to

LE = L− B

π

[
ln

(
πB

λ

)
+ Γ− 3/2

]
, (5)

and thus the total ‘mass’ of the oscillator increases (previously given by the amount
of water within the strait). Here Γ = 0.5772.. denotes Euler’s constant. This leads to
a corresponding decrease of the Helmholtz frequency (see (7) below). Second, this
radiation damping gives rise to an additional damping term, linear in this case, which
will simply be added below.

We non-dimensionalize as follows: z∗ = Hz, ζi = Hζ, A∗(z∗/H) = A0A(z), V∗ =
A0HV , with dimensionless excess volume

V ≡
∫ ζ

0

A(z)dz, (6)

ζe = HZe and t∗ = t/σH , where the square of the Helmholtz frequency, σH , is defined
as

σ2
H = gHB/A0L. (7)

Employing these scales in (3) and (4), eliminating u, and incorporating the linear
damping term, leads to the equation for the Helmholtz resonator in terms of the
excess volume V (t) :

d2V

dt2
+ ζ(V ) = Ze(σt)− r

dV

dt
− γ

∣∣∣∣dVdt
∣∣∣∣ dV

dt
. (8)

Here r = σB/2L is the radiation damping coefficient, and γ = (δ/L + k/H)A0/B is
the aggregate of quadratic damping coefficients. The restoring term, the second term
on the left, is considered to be a function of the excess volume determined by the
actual shape of the basin. Its dependence ζ(V ) will be discussed below for a constant-
and variable-depth basin respectively. Forcing by the external tide is assumed to be
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Figure 3. Hypsometric curves (giving surface area, A(z) = A∗(z)/A0 as a function of height
z = z∗/H) for some Wadden Sea basins whose numbers refer to figure 1 and table 1. The
long-dashed line gives the linear area–height relationship employing maximum depth of each basin.
The short-dashed line is a linear area–height relationship for the Zoutkamperlaag basin (#6)
approximating the true hypsometric curve closely near mean sea level. Its intercept with the z-axis
gives the (dimensionless) effective depth HE , which is about 12% of the true maximum depth H
given in table 1.

sinusoidal

Ze = F cos σt, (9)

and is characterized by its amplitude F and scaled tidal frequency σ = σe/σH . The
forcing parameters, together with damping parameters r and γ, will be treated as
independent quantities, and the effect of different choices will be considered.

3. Helmholtz resonator in a basin of constant depth
When the depth within the basin is uniform, the area A(z) = 1 and thus, from

(6) , V = ζ. Hence, in this case, the restoring term in (8) is linear. In the absence
of quadratic damping it reduces to the familiar equation describing a forced and
damped linear oscillator, which is able to resonate for weak enough damping.

With the nonlinear damping term included this reduces to an equation proposed
by van der Kreeke (1988) and DiLorenzo (1988). The nonlinearity generates higher
harmonics (Mehta & Özsoy 1978, and references therein), which in turn may resonate
at the Helmholtz frequency. Out-of-resonance damping is controlled by radiative
processes, for which the response is proportional to the forcing amplitude F , while,
near resonance, it is controlled by frictional processes, for which the response is
proportional to F1/2 (Zimmerman 1992).

4. Helmholtz resonator in a basin of variable depth
More often than not the sides of a basin slope (Boon & Byrne 1981). This is

prominently visible in figure 3, which gives hypsometric curves (area A as a function
of height z) of some of the Wadden Sea tidal basins (see table 1). The Wadden Sea
basins show a moderate degree of tidal amplification. Although at high tides there is
some basin-to-basin mass flux over the watersheds this does not exceed a few percent
of the tidal prism (Ridderinkhof 1988). Consequently, it is assumed here that these
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A0 H HE L LE B σH
# in figure 1 Basin name km2 m m km km km 10−4 s−1 σ

1 Marsdiep 755 38 4 6 9.0 2 1.1 1.3
2 Eierlandse gat 157 9.3 1.6 4 6.7 2 1.7 0.8
3 Vlie 650 20 2.7 5 8.9 3 1.2 1.2
4 Borndiep 274 20 2 4 6.8 2 1.5 1.0
5 Wierumerwad 52 10 1.4 2 5.6 3 3.8 0.4
6 Zoutkamperlaag 107 15 1.9 3 6.8 3 2.8 0.5
7 Eilanderbalg 46 16 1.3 1 3.1 1.5 3.7 0.4
8 Lauwers 116 20 1.7 2 4.7 2 2.5 0.6
9 Schild 32 3.5 1.7 1 2.6 1 4.5 0.3

10 Eems 375 25 4.2 3 8.2 4 2.3 0.6
11 Dollard 54 11 1.9 6 9.8 3 3.3 0.4
12 Westerbalgje 263 23 2.4 3 7.8 4 2.2 0.6

Table 1. Identification of tidal basins in Dutch Wadden Sea, enumerated in figure 1, with several
characteristic parameters: the basin’s mean surface area A0, maximum depth H , effective depth HE

(determined in a manner as explained in figure 3 for the Zoutkamperlaag basin), and length L and
width B of the connecting strait. From these the Helmholtz frequency σH (based on effective depth
HE and length LE , equation (5)) and non-dimensional forcing frequency σ = σe/σH are obtained.

basins can be treated as if they were isolated. Further work on connected basins
is needed to assess the validity of this assumption, which will also be relevant to
unambiguous multiple-inlet basins.

Previous formulations for Helmholtz resonators in basins with variable depth have
either treated the change in surface area with height parametrically (van de Kreeke
1988; DiLorenzo 1988), or have focused on the spatial dependence of the basin’s
response, disregarding the nonlinearity which this implies for the basin–strait system
as a whole (Miles & Lee 1975). To go beyond the simple constant-area (constant-
depth) basin, Green (1992) assumed a linear dependence on height

A(z) = 1 + z, (10)

the offset being due to the fact that the deepest point of the basin is non-dimensionally
at z = −1, while, in view of the adopted non-dimensionalization, A(0) = 1. Compar-
ison with figure 3 shows that such a model is more applicable when true depth is
replaced by a (shallower) effective depth for which the linear relationship (10) holds
better. It is this effective depth which then determines the Helmholtz frequency (7).
With this linear expression (10) the excess volume elevation relationship is, from (6),

V = ζ + ζ2/2. (11)

Since ζ = 0 when V = 0 this yields, inversely, the nonlinear restoring term

ζ(V ) = (1 + 2V )1/2 − 1. (12)

Notice that (12) implies that the basin is ‘non-empty’ as long as V > −1/2. (The
non-dimensional volume of the unforced basin at rest equals 1/2). The evolution
equation of the excess volume (8), together with the restoring term (12), constitutes
the nonlinear oscillator which describes the response of a basin whose area decreases
linearly with depth, and which is connected to an open sea by a narrow strait, due
to a (tidal) wave at the entrance of frequency σ and shape determined by Ze(σt)).
Note that dV/dt is, by (4), physically related to the current strength in the strait.
Although emphasis here is on the response of almost-enclosed basins to tides it is clear
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that the same approximation applies to the response to waves at any other forcing
frequency, such as that of harbours to tsunamis (Miles 1974) and swell (Okihiro,
Guza & Seymour 1993), or that of coupled lakes to storms (Sorensen & Seelig 1976).

Green (1992) addressed (8) and (12) in the free, inviscid and unforced case in
the small-amplitude limit, in which case the rescaling ζ = εη, with ε � 1 a small
parameter, leads to a nonlinear equation for η, which he subsequently studied using the
Lindstedt–Poincaré method (Nayfeh 1973). This method solves a nonlinear (oscillator)
equation by assuming a perturbation expansion not only for the amplitude, but also
for the frequency. He showed that higher harmonics are generated at O(ε), while the
frequency increases with O(ε2). It turns out that this free response need not necessarily
be studied perturbatively as it can be obtained in closed form.

4.1. Exact free response

The free (F = r = γ = 0), nonlinear Helmholtz response of a basin with linear
variation of area with depth (10) is thus, from (8) and (12), governed by

d2V

dt2
+ (1 + 2V )1/2 − 1 = 0. (13)

Note that the second and third terms above together constitute the restoring term,
and the last, constant term should thus not be regarded as ‘forcing’. Also note that
this equation reduces to the harmonic oscillator for infinitesimal amplitudes of the
excess-volume fluctuations. This equation is most easily solved by writing it in terms
of the occupied area at surface level A ≡ A(ζ) = 1 + ζ to which the excess volume is,
according to (6), related by

V = (A2 − 1)/2. (14)

With this substitution we find that surface area A is governed by

d

dt

(
A

dA

dt

)
+ A− 1 = 0. (15)

This is the same equation that also governs the shape of long, nonlinear waves, subject
to Coriolis dispersion, in a co-moving frame of reference – see Ostrovskiy (1978), who
discusses phase-plane trajectories of this equation. Multiplying (15) with AdA/dt, and
integrating once, we obtain

1

2

(
A

dA

dt

)2

= q + A2/2− A3/3 ≡ P3(A) = (a− A)(A− b)(A− c)/3, (16)

where q is an integration constant, related to an ‘energy-level’, which is determined
by the initial area and rate of change. The right-hand side of this equation is a
third-degree polynomial P3(A) that needs to be positive and hence its factorization
requires b < A < a, see figure 4(a). Its solution A(t) can be obtained parametrically
as

A(τ) = a− (a− b)sn2(τ|m), (17)

t(τ) =

(
6

a− c

)1/2

[cτ+ (a− c)E(τ|m)], (18)

with sn(τ|m) the Jacobian elliptic function and E(τ|m) the elliptic integral of the
second kind (Abramowitz & Stegun 1964). The zeros of P3(A) are given by a, b, c =
1/2 + sin α1,0,−1, where αk = (2πk − β)/3, while parameter m = (a − b)/(a − c). Here

auxiliary variable β = sin−1(1+12q), which leads to real zeros provided −1/6 6 q 6 0.
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Figure 4. Analytic solutions of free mode: (a) P3(A) for q = −0.14 in which roots a, b and c are
identified. (b) Roots a, b, c of P3(A) = 0 as functions of q. (c) Period T (q). (d) Isolines in phase
space, for q = 0,−1/24,−1/12,−1/8. (e) Parametric solution curve A(τ), and (f) t(τ), for q ↓ −1/6,
q = −1/12 and q ↑ 0.

Since sn2(τ|m) is 2K-periodic and E(τ + 2K|m) = E(τ|m) + 2E (with K ≡ K(m) and
E ≡ E(m), the complete elliptic integrals of the first and second kind respectively),
from (18), the period of this solution, T , can also be obtained:

T = 2

(
6

a− c

)1/2

[cK + (a− c)E]. (19)

Equations (14), (17) and (18) together form the parametric solution of (13) and some
graphs may serve to illustrate it.

Figure 4(a) displays polynomial P3(A) for a particular value of q and identifies the
three roots of the cubic, displayed in figure 4(b) as a function of q. For q ↓ −1/6, b
and a are close to, but on either side of 1, the infinitesimal distance a−1 representing
the amplitude of the sea surface oscillation. The solution in this case is sinusoidal,
oscillating between these two extreme values. For q = 0, b = c and the sea level
becomes a set of ‘coupled parabolas’: ζ = 1/2 − t2/6, with t ∈ [−3, 3), (mod 6).
The basin just empties at low tide. (Curiously, the quadratic time-dependence of
the surface elevation in this fully nonlinear case seems to imply that (except at low
tide) the gravitional acceleration which particles residing at the surface experience
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Figure 5. (a) Free response of the surface area A = 1 + ζ, related to the excess volume by
V = (A2 − 1)/2, as given by the parametric solutions of the unforced and inviscid evolution
equation for V , for initial conditions varying from linear (q ↓ −1/6) to fully nonlinear (q ↑ 0).
Time is scaled with the period of a linear wave: 2π. (b) Average spring, mean and neap tidal
elevation over one tidal period (T ), as observed by Rijkswaterstaat in Lauwersoog at the end of
Zoutkamperlaag basin (#6) in the Dutch Wadden Sea. Displayed is 1 + ζi/HE , a scaled and off-set
version of the observed elevations, so as to be comparable with the free-mode. Equivalent depth has,
in accordance with the observation in figure 3, been taken as 12% of maximum depth, HE = 1.9 m.
Time is scaled with the lunar, semi-diurnal tidal period.

is less than g, as gravity g is now reduced by the uniform acceleration d2ζ/dt2,
dimensionally equalling −Hσ2

H/3 = −gH2B/3A0L.) Although the asymptotic form of
the free surface can be obtained from the general solution (17) and (18) in the limit
q ↑ 0 it is most easily obtained by directly integrating (16) with q = 0.

In figure 4(c), the period of the oscillation T is shown as a function of q. It has
a slight variation decreasing from 2π in the linear limit (q ↓ −1/6) to 6 in the fully
nonlinear limit (q ↑ 0). (In the latter case, with the asymptotic parabolic shape just
discussed, A = 1 + ζ vanishes at t = ±3, which confirms that the period T = 6.)
A useful representation of the solution can be given in the ‘phase-space’ spanned
by dV/dt and V , where, for each value of integration constant q, time acts as a
parameter tracing out a certain solution curve (see figure 4(d)). It should be noted
that the outermost curve (corresponding to q = 0) bounds the part of phase space
that has stable solutions. Initial values outside this curve should be avoided as isolines
cross the V = −1/2 line at which the restoring term (12) becomes meaningless. This
same phenomenon, namely the presence of a bounded region in phase space over
which stable solutions exists, also occurs in the forced and damped cases, considered
below, although the extent of this stable domain has not been further assessed in
this study. Figure 4(e, f) gives the dependence of surface area A (displaced sea level)
and time t on parameter τ. These two graphs can be combined to give the actual
evolution A(t), as in figure 5(a), showing the cusped structure in the fully nonlinear
case characterized by long-lasting highs and short lows.

4.1.1. Hamiltonian structure

Integration constant q was given the physical meaning of representing an ‘energy-
level’. This can be seen by writing (13) in Hamiltonian form

dV

dt
= y ≡ ∂H

∂y
, (20)

dy

dt
= 1− (1 + 2V )1/2 ≡ −∂H

∂V
, (21)

which implies a Hamiltonian

H(V , y) = 1
2

(
y2 − (1 + 2V ) + 2

3
(1 + 2V )3/2

)
, (22)
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where a constant has been slipped in for convenience. Because of (14), H can formally
also be written as

H = 1
2
(y2 − A2 + 2

3
A3), (23)

which shows, from (14), (16) and (20), that on fixed energy levels, H = constant, we
may identify q = H . A Hamiltonian form can likewise be obtained in the forced
case, with a non-zero time-dependent right-hand side Ze(t), by simply adding a term
−VZe(t) to (22) and (23). The Hamiltonian structure of the unforced equation guar-
antees the existence of closed ‘tori’ (curves in this unforced one degree-of-freedom
case), while a weak perturbative forcing can be anticipated to lead to the formation
of weak chaos (Zaslavsky et al. 1991). This will be discussed later on.

4.1.2. Comparison of observed tide and free mode

As table 1 shows, most Wadden Sea basins are close to resonance with the semi-
diurnal tide. This in itself is a striking result. It not only makes it plausible that
some of the processes discussed here might be of relevance to such tidal basins, but
carries the suggestion that the dimensions of the basin are not a coincidence, but are
themselves shaped by the presence of a resonance. They might reflect a kind of ‘most
unstable mode’ of the sedimentary environment.

Figure 5(b) gives the average observed tidal elevation at neap, mean and spring
tide in basin 6 of figure 1 (Zoutkamperlaag). Like the free solution, figure 5(a), it
shows, with increasing amplitude, both a change in tidal profile from sinusoidal to
parabolic, and a shortening of the ‘duration of the tidal period’. From the analogy
with a similar decrease in period for the free response (figures 4c and 5a) this
observed decrease might therefore perhaps be related to the nonlinear response of
the tidal basin to a single-frequency semi-diurnal (M2) forcing. However, we have
to acknowledge that such an amplitude-dependent change in period of a nonlinear
oscillator is a property of an inviscid dynamical system only (see §4.2). In contrast,
when viscous effects are present, apart from transient oscillations, such modulation is
absent (see §4.3). It is more likely therefore that this change may simply be explained
by the linear superposition with a second semi-diurnal forcing frequency component
of solar origin (S2), which, coincidently, leads to a similar shortening (lengthening)
of the tidal duration at spring (neap) tide. At present therefore it is unclear to what
extent nonlinearity amplifies this linear effect in nature.

The rather pronounced change in tidal profile (reflected in an increasing amount
of higher harmonics) for increasing ‘tidal range’ while going from neap to spring tide
lends some support to the suggestion that the tide within the basin is determined by
the dramatically shallower, effective depth (whose determination has been sketched
in figure 3) rather than by true, maximum depth. This is also suggested by the strong
bias towards shallower depths which hypsometric curves in this figure demonstrate.
For this reason effective depth has been employed to scale the observed tide in figure
5(b), as well as in the determination of the Helmholtz frequency in table 1. It shows
that tidal basins might be ‘more nonlinear’ than is anticipated on the basis of a basin’s
maximum depth.

Although the similarity between figures 5(a) and 5(b) suggests that the response
of the forced and damped nonlinear oscillator is perhaps dominated by the free
response, in reality tidal forcing and friction cannot be neglected. For this reason
these processes are subsequently added in what follows.
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Figure 6. (a) Numerical integration of the inviscid, forced evolution equation (24) for the excess
volume V and sinusoidal forcing (9) (solid curve), demonstrating resonant growth, natural detuning
and subsequent decay for F = 0.01 and σ = 1, as given by V versus time t for V (0) = −0.2,
dV/dt(0) = 0. Integration extends to t = 250. The dotted curve gives a stroboscopic plot at
σt = (2n+ 1)π, with n an integer, up to t = 500. (b) Phase-space trajectory of this solution, dV/dt
versus V , and, superimposed (curve on the left) Poincaré (stroboscopic) plot, see (a). (c) Same as
(b) for F = 0.2 and σ = 2, starting at initial point V (0) = −0.1, dV/dt(0) = 0.

4.2. Inviscid response to forcing

Although the consideration of the forced inviscid equation (see (8), with r = γ = 0),

d2V

dt2
+ (1 + 2V )1/2 − 1 = Ze(t), (24)

with Ze(t) the external tide, is perhaps without much physical interest there are some
mathematical aspects of it which justify it being considered briefly. First, a forced
nonlinear equation, unlike its linear counterpart, is not necessarily singular when
forced at resonance. This is due to the natural detuning (amplitude-dependent shift
of resonance frequency) accompanying the growth of the response. Second, a forced
nonlinear oscillator is of general interest because of the possibility of chaos that such
a system constitutes. To delineate if and under what circumstances this occurs is one
of the prime goals in dynamical system research. Third, the particular form of the
nonlinear restoring term addressed here is of some interest because it exhibits some
features not found in classical nonlinear oscillators, like the pendulum, and van der
Pol and Duffing oscillators.

4.2.1. Amplitude modulation

For fixed forcing (frequency and amplitude of the external tide), the amplitude
of the tidal oscillation within the basin may vary on a long time scale when the
forcing frequency is near resonance. This can be explained as follows. Tidal levels
are increasing due to the near resonance of the basin. However, the eigen-frequency
of the basin is now a function of the amplitude (see figure 4c) and thus will change
(natural detuning). As a consequence, the system is brought out of resonance and the
tidal amplitude drops, from which point the cycle starts again (see figure 6a). In figure
6b this solution is presented in phase space. It shows that due to the weak forcing
the phase-space trajectory drifts from orbit to orbit approximately retracing its steps
in a quasi-periodic way. In that same figure a ‘stroboscopic’ version of the trajectory
– a Poincaré plot – has also been presented, which gives the basin’s volume at times
when the external tide is low (at a minimum). It displays the regular character of the
modulation and the quasi-periodicity by the fact that it is a continuous line. Similar
features arise for other frequencies, as e.g. seen in figure 6(c) for forcing at twice
the (linear) Helmholtz frequency, σ = 2. (Notice that this implies that the forcing
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Figure 7. (a) Numerical integration of the inviscid (r = γ = 0) forced evolution equation (24) for
the excess volume V , forced by (9) for F = 0.1 and σ = 1/2, as given by V versus time t for
V (0) = −0.1, dV/dt(0) = 0. (b) Phase-space trajectory of this solution, dV/dt versus V . (c) Poincaré
plot in phase space, dV/dt versus V , for F = 0.785 and σ = 1.917, of four orbits in which ‘traces of
chaos’ are evident in the erratic central orbit. Note that the two inner ‘orbits’ consist of a left and
right segment each.

has period π, while the free response has period 6 6 T 6 2π. Therefore the free
response is dominated by the subharmonic and a stroboscopic picture of this with
the forcing period alternately gives points roughly below and above mean sea level,
see also figure 7c.) Forcing frequencies below the Helmholtz frequency (figure 7a)
have phase-space trajectories (figure 7b) that traverse two different level sets. Poincaré
plots, nevertheless, in general trace out regular curves. One exception to this statement
is seen in figure 7(c) to be discussed now.

4.2.2. ‘Chaotic tides’

Interest in forced nonlinear oscillators, like the forced pendulum, or van der Pol
or Duffing oscillators, is fuelled by the possible existence of chaos (Rasband 1989;
Parker & Chua 1989). Chaos in these equations occurs for weak forcing because of
destruction of separatrices in the unforced system, which connect saddle points with
themselves (homoclinic), or with each other (heteroclinic connections). The onset of
chaos (‘stochasticity’) is attributed by Zaslavsky et al. (1991) to the fact that the
period of the unforced orbits increases from a finite value at a centre to infinity at
the separatrix. The effect of weak forcing on the free response will be weak near
the centre but large near the separatrix, because the period will be changed only
slightly in the former but dramatically in the latter case. Consequently, the phase of
the particle within a period of its orbit (related to its location in phase space when
observed at regular time intervals) also changes only little near the centre, but wildly
near the separatrix. Interestingly, however, the forced inviscid version of (8),

dV

dt
= y, (25)

dy

dt
= 1− (1 + 2V )1/2 + Ze(t), (26)

has, for vanishing forcing, only one critical point, which is a centre. Moreover, the
period of the orbits never increases to infinity, but rather decreases slightly, from 2π
to 6. The standard ingredients for the occurrence of chaos are thus not available. In
passing it should be remarked that an even-ordered truncation of a Taylor expansion
of the nonlinear restoring term may obscure this result as it apparently always has
two real zeros, one of which is a saddle which does have an infinite-period self-
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Figure 8. Irregular observed sea level (a) and current (b) observations versus time in Moldefjord,
Norway (from Golmen et al. 1994).

intersecting separatrix that may, by destruction, suggest the occurrence of chaos,
despite its absence in the exact form of the nonlinear restoring term.

Although a saddle point, the classical ingredient for chaos, may be absent, there
nevertheless seems to exist a tiny region in parameter space for which numerical
calculations of the nonlinear Helmholtz oscillator (with the exact restoring term),
subject to sinusoidal forcing (9), suggest the solutions to be chaotic (see figure 7c). It
is speculated that this is because of the occurrence of a saddle point in the Poincaré
map. The period of the modulation in this case goes to infinity at the separatrix and
it is the sensitiveness to the change in modulation period in the neighbourhood of
this separatrix which creates the big changes in phase that might lead to a chaotic
response. This leads to the counterintuitive but intriguing suggestion that one may
occasionally expect to observe ‘chaotic tides’, an expression that, in view of the extreme
regularity of the tidal forces, might at first look be thought a contradiction in terms!

4.2.3. Field observation of irregular tides

That tides in almost-enclosed basins can be chaotic is suggested by the observations
of Golmen, Molvaer & Magnusson (1994), see figure 8, who, in a fjord in Norway,
observed an ‘irregular’ sea level and, in particular, current modulations of about 45
minutes period, whose origin they, in view of the persistency of this phenomenon,
attribute to the tides. To what extent the ‘chaos’ in their tidal observations can be
explained by the above (inviscid!) mechanism, however, is as yet unclear, in particular
as the chaos in the theoretical model does not seem to persist under the addition of
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friction. Further analysis is also needed of this case, for which the forcing period is
much larger than the free period, σ � 1.

4.3. Viscous response to forcing: multiple steady states

If, more realistically, we do include friction, direct integration of (8) indicates that the
system generally settles down into a steady state (a response curve, V (t), of particular
amplitude V̂ , phase and shape), which is usually independent of initial conditions.
The temporal shape of these steady states may include (but can also be more complex
than) the free mode given in figure 5(a). It may for instance exhibit an intermediate
minimum/maximum within one period, while it may also feature asymmetric profiles,
of relevance for net sediment transport. However, the amplitude response curve –
giving the amplitude of a steady state as a function of forcing frequency – need not
always indicate that there is a unique state: systems close to resonance may exhibit
multiple equilibria.

4.3.1. Approximate stationary response in the small-amplitude limit

When the excess-volume fluctuations V (t) are of small amplitude (and when the
forcing and frictional parameters are also small) (8) can be approximated by rescaling
V → εV , r → ε2r, γ → ε2γ, F → ε3F (with ε � 1). The choice for this particular
ordering of parameters is motivated by our desire to obtain a uniformly valid
approximate solution of (8) and (12) in which damping, forcing and nonlinearity all
appear at the same order in our perturbation scheme (Nayfeh & Mook 1979). With
(9), this scaling leads to the following equation:

d2V

dt2
+ V =

ε

2
V 2 − ε2

2
V 3 + ε2F cos (σt)− rε2 dV

dt
− γε2

∣∣∣∣dVdt
∣∣∣∣ dV

dt
+ O(ε3). (27)

This can be considered an extension of Green’s (1992) small-amplitude equation
to which forcing and damping terms have been added. Note that the odd-ordered
Taylor series truncation guarantees that the restoring term has only one real zero.
This equation is, following the derivation in Nayfeh & Mook (1979, p. 196), solved
by a multiple-scale perturbation expansion and has an amplified response at σ =
1, 1/2, 1/3, 2/3, .., 2, 3, .., 3/2, ... The nonlinear friction term is expanded in its Fourier
series and, by requiring the absence of secular terms in the equations governing the
subsequent orders of the perturbation expansion, near the primary resonance (which,
for consistency, requires σ = 1 + ε2ω) the following result is obtained. The solution
is, up to second order, given by

V = V̂ cos (σt− φ) + 1
4
εV̂ 2[1− 1

3
cos 2(σt− φ)] + O(ε2). (28)

The response is thus frequency-locked to the forcing. Also it exhibits a ‘drift’ term (the
constant term) providing a net displacement of the mean state. Here the amplitude V̂
and phase φ vary on a slow time scale governed by

V̂
′
= − r

2
V̂ − 4γ

3π
V̂

2
+
F

2
sinφ, (29)

and

V̂φ′ = ωV̂ − 1

12
V̂

3
+
F

2
cosφ, (30)

where a prime indicates differentiation with respect to the slow time variable ε2t.
Of particular relevance are the steady states of these latter equations to which all
solutions tend during the decay from the particular initial conditions they start



376 L. R. M. Maas

2.5

2.0

1.5

1

0.5

–1–2 1 2w

A

B

C

V̂

Figure 9. Amplitude response V̂ -curves against detuned frequency ω ≡ (σ − 1)/ε2 (with ε � 1
the detuning parameter). For cases of near-resonant forcing, σ ≈ 1, it has bent ‘resonance horns’
indicating multiple equilibria and an increased response when F increases from 0.1 to 0.3 and 0.5,
for frictional parameters r = γ = 0.01. Near ω ≈ 0.5 three equilibria, A, B and C, are obtained
where the vertical line intersects the amplitude-response curve (for F = 0.5). The smallest and
largest of these intersections are stable and correspond to a choked (C) and amplified (A) regime
respectively.

with. These are obtained by equating the right-hand sides to zero, which yields the
frequency-response curve

ω =
1

12
V̂

2 ± 1

2

{(
F

V̂

)2

−
(
r +

8γ

3π
V̂

)2
}1/2

, (31)

see figure 9. This figure shows for some particular values of forcing and friction
parameters, that, near resonance, bended resonance horns occur. For these parameter
values this indicates the presence of three equilibria, two of which (A and C) are stable
and one (B) unstable. This simultaneous presence of an amplified regime A (V̂ > 1)
and a choked regime C (V̂ < 1), for the same parameter values, most compactly
presents the opposing tendencies to which a tidal basin, connected to the open sea by
a narrow channel, is subject.

In a similar way the response can be determined for forcing frequencies which
are, for instance, near twice or half the Helmholtz frequency. They yield a combined
harmonic and subharmonic or superharmonic response respectively.

4.3.2. Multiple steady states in the exact model

Results in the previous section may be quantitative, but are obtained for a polyno-
mial approximation of the exact algebraic restoring term (12). Since, near resonance,
the amplitude of the response may be amplified this casts doubt on the correctness
of omitting higher-order terms and it leaves one wondering whether the existence of
multiple steady states holds also with the full nonlinear restoring term (12) present.
For this reason a numerical integration of (8) with parameter values as suggested
by those from the previous section has been performed with the dynamical systems
tool DSTOOL (Guckenheimer et al. 1992) employing a fourth-order Runge–Kutta
integrator. The Poincaré plot of this is seen in figure 10(a), which confirms that mul-
tiple steady states (the centres of the two stable foci) may exist simultaneously, but
now at finite amplitudes of the basin’s excess volume V and channel flow dV/dt. The
presence of fixed points in the Poincaré map also confirms that the response is locked
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Figure 10. (a) Poincaré plot of numerical integration of (8) for σ = 1.01, F = 0.001, r = 0.001
and γ = 0, for various initial conditions, indicating the presence of two stable foci. (b) Same as
(a) for σ = 2.04, F = 0.1, r = 0.01 and γ = 0. There are two steady states to which trajectories in
phase space tend. The central, small-amplitude one has forcing period. The large-amplitude one is
a subharmonic and its period is twice that of the forcing and thus shows up as a pair of points in
the Poincaré plot (the two off-centre points to which the spirals tend). (c) Same as (b) for σ = 3.04,
F = 0.2, r = 0.001 and γ = 0, but the large-amplitude steady state now has period three times that
of the forcing.

to the forcing, as in the small-amplitude approximation. Note in this figure also that
a finite-amplitude response is obtained despite the weakness of the forcing. It remains
to be seen whether this result can be extended to larger values of forcing and friction
such that the amplification reaches values obtained in nature. Multiple steady states
are also obtained for forcing frequencies a little above 2 and 3 (see figure 10b, c),
except that the small-amplitude (central) state is dominated by a response at the
forcing frequency, while the large-amplitude state is dominated by the subharmonic
(which is near the frequency of the free mode). This manifests itself in the Poincaré
map as fixed points of period 2 and 3 respectively. No amplitude-response curves for
the exact fully nonlinear restoring term have been obtained so far.

4.3.3. Field indications of changing tidal ranges

The bent resonance horn in figure 9 and the Poincaré plots of figure 10 indicate
that, for the same values of the ‘parameters of the system’ (characterizing forcing and
friction), the basin may respond with either a small- or large-amplitude oscillation.
These states have their own ‘basins of attraction’ that do depend on initial conditions
(Nayfeh & Mook 1979) and may, in fact, do so in a fractal manner, as a study on
the forced and damped pendulum has shown (Grebogi et al. 1990). The implication
of the bend in the resonance horn is that one of these modes may cease to exist
for ‘quasi-stationary’ changes of the parameter values, when the frequency band over
which multiple equilibria exist is left. Thus, when this happens, the system may have
to change its behaviour rapidly to the only remaining state, thereby shifting to a tidal
regime with smaller or larger range. Changes like these may perhaps be triggered
by changes in mean sea-level, which, in view of the adopted scaling, translates into
a change of F in (31). With reference to observations in the Strangford Lough,
Northern Ireland, it has been suggested by Dr G. Savidge of the Queen’s University
of Belfast (personal communication) that evidence of such rapid changes in tidal
amplitudes of almost-enclosed basins may be hidden in observed sedimentological
zonation patterns. An abrupt drop in tidal amplitude may ultimately form the most
dramatic demonstration that a tidal basin with sloping bottom constitutes a nonlinear
Helmholtz resonator.
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5. Summary and discussion

Closed basins possess eigenmodes which are characterized by the trivial fact that
they conserve the enclosed fluid volume. These modes differ only slightly when
the basin communicates with an open sea through a narrow strait. However, one
additional mode appears, which does break the above constraint. This is the pumping,
or Helmholtz mode, characterized by a periodic mass (volume) exchange with the
open sea. This low-frequency mode is generally also the most energetic mode present.
This mode is characterized by the absence of a spatial dependency of the sea surface
elevation within the basin, and can thus be described simply by one time-dependent
parameter: the excess volume (which gives, at any moment, the excess amount of
fluid when compared with the undisturbed fluid volume). The volume, and related
sea-level, change due to the transport of water through the connecting strait. This
transport of water is, in turn, driven by the pressure difference, due to a difference
in sea-level heights which exists between the entrance and exit of this channel. The
sea level of the open sea is determined mainly by the tide and is thus a prescribed
function of time. The sea level in the basin is determined by the volume flux through
the strait and by the change which this is consequently able to produce, radiative and
frictional effects being accounted for by linear and quadratic damping terms and by
a change in the effective length of the strait. For a basin with vertical sidewalls this
sea-level change is linearly proportional to a change in fluid volume. When the basin
has sloping sidewalls (increasing surface area with increasing height), however, the
amount of sea-level change which a given volume flux produces in a certain period
of time depends on the pre-existent water level. When this level is low the change
will be large, as the surface area occupied is small. Conversely, when the initial basin
sea level is high its change will be small, as the occupied surface area is large. The
sea level within the basin thus is a nonlinear function of the enclosed volume, a
function which is simply determined by the hypsometry (basin area as a function of
height) of a particular basin. This nonlinear term presents the restoring force of a
nonlinear oscillator in a second-order ordinary differential equation, which is driven
by the external tide and damped by seaward radiation of waves and frictional and
form drag in the connecting strait. As the relationship between volume and sea level
is in general monotonic, the nonlinear restoring term can be replaced by any other
relationship, which is more in accordance with reality, but the linear relationship
between surface area and height employed in this study might probably serve as its
archetype.

Analysis of this oscillator with linear area–height relationship, has been performed
in several limits. In the free case, its solutions can be obtained exactly. Surprisingly,
the period of the free mode is restricted to a tiny interval and, moreover, decreases
as the nonlinearity increases, in contrast to the increase of period found for classical
nonlinear oscillators. Also, the accessible region of phase space, over which stable
solutions exist, is limited. Again unlike nonlinear oscillators usually studied in litera-
ture, this oscillator has no saddle point. Consequently, when forcing is added, chaos
cannot occur in the traditional manner, that is, due to a break-up of the separatrix
through a saddle point. Numerical analysis suggests, however, that the Poincaré map
does have a saddle point whose separatrices might break-up, resulting in chaos. So
far, this seems to be a rare event though, which does not withstand the inclusion of
damping.

Indeed, when damping is added, in general only one steady state (limit cycle) is
obtained which is phase-locked to the forcing. For some parameter values, however,
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multiple steady states exist. Near the primary resonance (forcing frequency close
to the Helmholtz frequency) both an amplified and a choked tidal regime may
therefore coexist. For forcing periods which are multiples or fractions of the Helmholtz
frequency there is one state having the forcing period, as well as a state with a period
close to the free period. In this study only a single-frequency forcing has been used. In
view of the fact that the tide usually consists of (at least) two frequency components
(the semi-diurnal lunar M2 and solar S2 tide, related to the spring-to-neap tidal
oscillation) it would also be interesting to consider in the future the response to
multiple-frequency forcing.

That sloping sides of a ‘container’ can give rise to a nonlinear response was
observed earlier in a study on solitary waves in a channel of arbitrary cross-section
(Peregrine 1968). Because of the slope, the cross-sectional area below surface level in
this case becomes quadratically related to the height of the free surface. This leads to
a reduction of the advective nonlinearity and to an increase in soliton width. Indeed,
for strongly varying topography it can turn a soliton into a wave of depression, rather
than its usual appearance as a wave of elevation.

In the derivation of the oscillator equation (8) several assumptions have been made
that strictly allow the analysis to be applicable only to almost-enclosed basins in which
the tidal range is small compared to the mean depth (such as the assumption of a
linear sea level slope within the strait). A number of these can be relaxed relatively
easily and lead to a more accurate, but slightly more complex, ordinary differential
equation for the excess volume. It would be useful to derive and analyse that equation
rigorously and see whether that gives a more robust occurrence of chaos that can
more easily withstand the inclusion of damping terms.

Finally, the theory derived here is for the Helmholtz-mode only, which imposes some
requirements on the configuration of the basin. It leaves one wondering whether incor-
poration of non-uniform depth (tidal flats) would be relevant to quarter-wavelength
resonances in half-open basins, like those in the Bay of Fundy, too.

The author would like to thank Jef Zimmerman for sharing his inspiring thoughts
on tidal dynamics in shallow basins, Arjen Doelman for his suggestions concerning
the occurrence of chaos in the nonlinear Helmholtz resonator, Huib de Swart for
penetrating comments on an earlier draft, and Herman Ridderinkhof, Peter Beerens,
Gerard van der Schrier and George Schramkowski for discussions. Rijkswaterstaat
(RIKZ) kindly provided tidal elevation and hypsometric data of the Dutch part of
the Wadden Sea. Frans Eijgenraam helped in preparing hypsometric curves of this
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Mehta, A. J. & Özsoy, E. 1978 Flow dynamics and nearshore transport. In Stability of Tidal Inlets
(ed. P. Bruun), pp. 83–161. Elsevier.

Mei, C. C. 1989 The Applied Dynamics of Ocean Surface Waves. World Scientific.

Miles, J. W. 1948 Coupling of a cylindrical tube to a half space. J. Acoust. Soc. Am. 20, 652–644.

Miles, J. W. 1974 Harbor seiching. Ann. Rev. Fluid Mech. 6, 17–35.

Miles, J. W. & Lee, Y. K. 1975 Helmholtz resonance of harbours. J. Fluid Mech. 67, 445–464.

Molines, J. M., Fornerino, M. & LeProvost, C. 1989 Tidal spectroscopy of a coastal area:
observed and simulated tides of the Lake Maracaibo system. Cont. Shelf Res. 9, 301–323.

Nayfeh, A. H. 1973 Perturbation Methods. Wiley-Interscience.

Nayfeh, A. H. & Mook, D. T. 1979 Nonlinear Oscillations. Wiley-Interscience.

Okihiro, M., Guza, R. T. & Seymour, R. J. 1993 Excitation of seiche observed in a small harbor.
J. Geophys. Res. 98, 18201–18211.

Ostrovskiy, L. A. 1978 Nonlinear internal waves in a rotating ocean. Oceanology 18, 119–125.

Parker, T. S. & Chua, L. O. 1989 Practical Numerical Algorithms for Chaotic Systems. Springer.

Peregrine, D. H. 1968 Long waves in a uniform channel of arbitrary cross-section. J. Fluid Mech.
32, 353–365.

Platzman, G. 1972 Two-dimensional free oscillations in natural basins. J. Phys. Oceanogr. 2,
117–138.

Prandle, D. 1991 Tides in estuaries and embayments. In Tidal Hydrodynamics (ed. B. B. Parker),
pp. 125–152. Wiley and Sons.

Rasband, S. N. 1989 Chaotic Dynamics of Nonlinear Systems. Wiley Interscience.

Redfield, A. C. 1961 The tidal system of Lake Maracaibo, Venezuela. Limnol. and Ocean. 1, 1–12.

Ridderinkhof, H. 1988 Tidal and residual flows in the Western Dutch Wadden Sea, I: Numerical
model results. Neth. J. Sea Res. 22, 1–22.

Shih, H. H. & Baer, L. 1991 Some errors in tide measurement caused by dynamic environment. In
Tidal Hydrodynamics (ed. B. B. Parker), pp. 641–671. Wiley and Sons.

Sorensen, R. M. & Seelig, W. N. 1976 Hydraulics of Great Lakes inlet – harbour systems. Proc.
Fifteenth Coastal Engineering Conf., Honolulu, Hawaii, Vol. 2, pp. 1646–1665. ASCE.

Speer, P. E. & Aubrey, D. G. 1985 A study of non-linear tidal propagation in shallow inlet/estuarine
systems. Part II: Theory. Est. Coast Shelf Sci. 21, 207–224.

Stigebrandt, A. 1980 Some aspects of tidal interactions with fjord constrictions. Est. Coast. Shelf
Sci. 11, 151–166.

Stommel, H. & Farmer, H. G. 1953 Control of salinity in an estuary by a transition. J. Mar. Res.
12, 13–20.

Zaslavsky, G. M., Sagdeev, R. Z., Usikov, D. A. & Chernikov, A. A. 1991 Weak Chaos and
Quasi-Regular Patterns. Cambridge University Press.

Zimmerman, J. T. F. 1992 On the Lorentz linearization of a nonlinearly damped tidal Helmholtz
oscillator. Proc. Kon. Ned. Akad. v. Wetensch. 95, 127–145.


